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TWO-WAVE MODEL OF THE PROPAGATION OF PERTURBATIONS IN A LIQUID 

WITH GAS BUBBLES 

V. G. Gasenko, V. E. Nakoryakov, 
and I. R. Shreiber 

UDC 532.529 

The speed of sound is dispersed in the propagation of the sound in a liquid containing 
gas bubbles. The form of the dispersion curve is well known [I]: for bubbles of one size, 
there are two dispersion branches divided by a region of opacity. Propagation of acoustic 
waves was examined in the Burgers--Korteveg--de Vries (BKV) approximation in [2-4]. This 
approximation corresponds to only one (the left) branch of the dispersion curve. 

A model of perturbation propagation is proposed in the present work which corresponds 
to both branches simultaneously. An equation is derived and its transient solutions are 
found. Ranges of application of the low-frequency and high-frequency approximations of the 
equation are established. 

I. In studying long-wave perturbations, either the effect of the compressibility of the 
liquid is ignored or it is reduced to contributing to dispersion of the wave through acoustic 
radiation with pulsations of the bubbles in the wave [2-6]. A more complete account of the 
compressibility of the liquid leads to the appearance of a second branch in the dispersion 
curve cf = cf(~), where cf = ~/k is the phase velocity; ~ is the frequency of the superim- 
posed perturbation; k is the wave number. The equation for the dispersion curve has the 
form 

i ( ,  i,2 

m: = ~/~o; ~ = 3ypoa/R~Pl is the square of the resonance frequency of the bubble; pot is 
the pressure of the gas in the bubble; p, is the density of the liquid; Ro is the initial 
radius of the bubble; y is the adiabatic exponent; c~, = Ypo2/po~o is the square of the low- 
frequency approximation of the speed of sound in a liquid with gas bubbles; ~o the initial 
gas content; c2 is the speed of sound in the liquid. The curve of Eq. (I.i) is shown in 
Fig. la. The initial section of the left side of the dispersion curve corresponds to the 
Korteveg~-de Vries (KV) equation [2-4] 

Op/Ot + colOp/Ox - -  ~Co~08p/oz 3 = 0 

(p is the pressure in the mixture). 
the Klein--Gordon equation 

The right branch of the dispersion curve corresponds to 

02. P__ 202P C~ 2 2 
Ot 2 c2 ~  2 - -  2 ~  ~ p  - -  c2r176176 6p. 

%1 

Shown below is the derivation of an equation corresponding to both branches of the dis- 
persion curve (Fig. la). 

2. Let us turn to equations describing the gadynamics of a homogeneous bubble sus- 
pension 

ou t a p .  (2.2) ap ou (2.1) 
0~-- p Oz' 'Or = POx 
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or, equivalent to system (2.1), (2.2), the single equation 

O2P/cOt 2 = c92p/cOx 2 (2.3) 

(p is the density of the mixture and u is the sound perturbation in the mixture). We will 
assume that most of the nonlinearity in the above problem is introduced by the equation of 
state, which is derived from the equation for the pulsation of a single bubble and from ele- 
mentary relations of the homogeneous model in [i, 4]. If we ignore the dissipations, in- 
cluding dissipation due to acoustic radlatlon, that occur when compressibility is considered, 
we have the following equation of state: 

la (2.4) @ = + 

Consideration is made of compressibility in ER. (2.4) only in the changeover from R to p in 
the Rayleigh equation. In Eq. (2.4), c a is the square of the speed of sound, plotted from 
current characteristics of the wave: 

c -~ = PcP/TP + (t - -  (~)/c~, fo~ q) < t0  -~ c- '  ~ P~lyp. 

At low amplitudes of the initial perturbation, c a may be represented through the initial 
parameters of the medium and the current amplitude of the wave 

c = ---- c~1 -1- -- 2q~~ q- (~' +t) (1--  c~/c~) c~l~p. ( 2 . 5 )  
P,~o 

The p a r a m e t e r  r e l a t i o n  ca/m~ = Ra/3r - - ~ )  i s  s l i g h t l y  d e p e n d e n t  on wave a m p l i t u d e  and w i l l  
henceforth be assumed constant 

e~/o~ .= R~/3% (i - -  %) = 2fi, ( 2 . 6 )  

imation. The nonlinearity 

dispersion relation (i.i). 
equation 

where 8 is the dispersion parameter in the BKV equation [2-4]. Taking (2.5), (2.6) into 
account, Eq. (2.4) may be written in the form 

8 p = c : l S p q -  2c:1 Appo 6p-l- 2 ~ ( ~  c~t ~)'02P~ ( 2 . 7 )  

Twice differentiating Eq. (2.7) over time and using the gasdynamics equation of the mixture 
in the form of (2.3), we obtain a single equation relative to the pressure perturbation 

a~__P__.' a2P__o dSc~ I ( A p ) ' -  2~ a 2 (~'p ~a'p~ (2 .8 )  
o01 - -  - -  c ]  

Substitution in the nonlinearity is done for the relation ~p ffi c~,~p, valid to a first approx- 

d~ (AP2~ - c~1~(~}i). Linearized equation (2.8) corresponds to 
dt2~ Po J-- 
For low frequencies ~ < ~o, Eq. (2.8) transforms into Boussinesq's 

a 2 p  _2 o~__p __ 2co21 o 2 ( (ap)~  a~P 2 = O. ~-~ zooz ~ 7z  ~ \ - ' ~ o  ] - -  26 

This equation contains as solutions waves traveling to the right and to the left, which makes 
it possible to use it as a basis for examining problems connected with reflection of a wave. 
For waves traveling in one direction, this equation transforms into the KV equation 

3 ap ap Ap ap 0 p 
0-T ~- col -~z -~ cO Po 0z ~C~ ~ 7  ---- O. 

For frequencies ~ ~ moco,/ca, Eq. (2.8) transforms into the nonlinear Klein--Gordon equation 

~2p P r 
c ~ a~--- - ~ (@ - 2 (@)D. 

(2 .9 )  

Wave propagation in a liquid with gas bubbles was studied in [7] in an approximation of the 
linear Klein--Gordon equation. Linearized equation (2.9) corresponds to the right branch of 
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the dispersion curve. In the general case, Eq. (2.8) corresponds to both branches of the 
dispersion curve (see Fig. la) and contains two characteristic speeds of sound co~ and c=. 
Henceforth, this equation will be referred to as a two-wave nonlinear equation (TNE). 

Accounting for dissipation and the nonlinearity of the oscillations of a single bubble 
leads to a more complete equation of state 

" ~P = c~OP -}- 2~z ( op ~ ~ 1  + 2~ -}- 2tq (p2/co~Op/O~ --  p~/c~Op/Ot). (2.10) 

where p= is the dissipation coefficient of the mixture, including viscous, acoustic, and 
thermal losses; k~ = (i/6)R~/~o is the coefficient of the greatest nonlinearity. 

Equation of state (2.10) leads to a more complete two-wave equation which more accurately 
describes empirical results 

d ~ d (2.11) Pt t - ' c : 'P== - -  2c~" (AP'~ ~ - -  c~ -- 2P ~-~ (pt t -c~p=~)  2F ' '~(Pt t - -c~P==)  c~ 2k~'d' . ~., ~ % .~ (po l (  dp~= - -  - -  k " Z f ]  " 

3. Let  us examine the low-  and h igh - f requency  approx imat ions  o f  Eq. (2 .11)  in  g r e a t e r  
d e t a i l .  We w i l l  look  at the l e f t  branch of  the d i s p e r s i o n  curve,  d e s c r i b i n g  subresonance 
f requenc ies .  To a f i r s t  approx imat ion  f o r  (5p/po) = ~, t h i s  bzanch can be descr ibed by the 
wave equat ion  

a=P c~ ~ = o(sD. (3 .1)  
Ot = Oz = 

In this case, Eq. (2.11) transforms into the Navier--Stokes--Boussinesq equation 

The t r a n s i t i o n  to  a u n i d i r e c t i o n a l  wave i s  made as f o l l o w s .  Wave opera to r  (3 .1)  i s  r ep re -  
sented in the form 

a=p .,Pp a (ap aT), a(ap  ap) a== ',o, a=--i = -~ ~ + co, -- Co ~ ~-~" + Co "~" �9 
(3.3) 

For determinacy, we will choose a wave traveling to the right (the characteristic x -- cot = 
~). In this wave, the following relation is valid 

~az = --1ICon.MOt ~- o(~). (3 .4)  

Using Eqs. (3.3) and (3.4), Eq. (3.2) is integrated once over time to obtain the BKV equation 

a-T + co T= + co, ~ ~= + ~, t - ~ ) ~=~ e l )  a= - ~  ~+ k, c01pl ~ c~ ) 0= ~ 0, j = o. 

The last term in (3.5) may be written approximately in the form 

o~)- 4 )~ a=j a=" 

This nonlinear term may correspond to wave intensification and "sharpening" of the wave 
structures. Nonlinearity of this nature was considered in a study of stationary waves in 

(3.5) 
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a bubble mixture [8]. On the right branch, where ~ > ~oco,/ca, the followlng is valld to a 
first approximation 

a'p d ~ o(~') 
Ot a Oz  a = 

and Eq. (2.11) transforms into the nonlinear Klein-Gordon equation with dissipation 

( ~ ( t o'p o'p~ + ~ _ ~ 8p ffi 2~ - -  ~o~S/~,~o~ v~ - 2k~p; ( 4 -  ~' w . , . , / a p / "  2p t . ~  . ~ _  . ~  j ~, ) =~i @, + 2~, (cI - , , , , ,  op ~176176 l'~i'J " 

The dispersion curve corresponding to llnearlzed equation (2.11) is shown in Fig. lb. The 
presence of dissipation in the system "smears" the "opacity wlndow." It should be noted that 
accounting for distribution with respect to dimensions Ro at the initial moment of time in 
the mixture also leads to a continuous dispersion curve and the appearance of damping in the 
system. This effect is discussed in [3, 6 ,  9]. 

4. Numerical modeling of the propagation of perturbations in a liquid with gas bubbles 
was done on the basis of Eq. (2.8). With the following substitutions, 

T = Co~tlVp, ~ = z lV~ ,  u = 2A~/po, V = c~/Co~, 

Eq. (2.8) may b e  reduced to dimensionless form 

u ,  - -  ut~ - -  ( l / 2 ) ( u ~ ) ~  --V-S(u,, - -  u ~ ) , ,  = O. ( 4 . 1 )  

Only one parameter V is introduced in Eq. (4.1), so that the nature of the solutions to 
(4.1) depends significantly on the type of inltlal perturbation. 

In the general case, Eq. (4.1) describes a wave propagating to both sides. To separate 
waves propagating to one side only, we solved the following boundary-value problem: zero 
initial conditions were chosen, and the boundary condition on the left and of the integration 
interval [0, L] was assigned in the form 

u (0, "~) = {0, T < O, 
uo exp [-- (-r/'%)~l, "~/> O. (4.2) 

This corresponds to the appearance of a finite signal with a leading edge of limiting steep- 
ness. To determine the nature of the solutions of Eq. (4.1) relative to parameters V, uo, 
and To, we also solved the limiting cases of Eq. (4.1) corresponding to: 

a) the low-frequency branch 

u,-c - -  ugg - -  ( t / 2 ) ( u ) ~  2 - -  u~r = O; ( 4 . 3 )  

b) the high-frequency branch 

V 2 u ~  - -  u ~  + u ( t  - -  V -2)  - -  2 V - 2 u  2 = O. ( 4 . 4 )  

It should be noted that for gas contents @ = 10-'-10 -a in gas--liquld mixtures, parameter 
V 2 = 10-10 ~. Thus, the nonlinearity in Eq. (4.4) may be ignored, and we can use the linear 
Klein--Gordon equation on the hlgh-frequency branch 

V 2 u ~  - -  u ~  + tt = O. ( 4 . 5 )  

Case a. Since Eq. (4.3) reduces to the KV equation for waves propagating to one side, 
it should be expected that the nature of the solutions of these equations will depend on the 
amplitude uo and duration To of the initial signal, i.e., will be determined by the simili- 
tude parameter o z To u/---o [I0, ii] for nonlinear processes with dispersion. At ~ > ~, where 
e, is a certain critical value, solitary tones will predominate in the solution. At o < ~, 
a wave packet will be formed. 

Equation (4.3) is solved by means of numerical integration by a three-layer explicit-- 
implicit difference diagram of second-order accuracy with respect to AT and A~, and the solu- 
tion fully supports this conclusion. Figure 2 shows the evolution of signal (4.2) (i) ~ = 0, 
2) ~ = 7.5, 3) ~ = 25) at o ffi 5.6, uo ffi ~, and To = 4. It can be seen that in this case only 
solitons are formed. The value of o,, as the upper limit with respect to o for the soliton 
solutions, lies within the range 11.2 > o~ > 5.6. This coincides roughly with the value of 
o for the KV equation, for which o, = 8 [i0]. It must be noted that the steepness of the 
leading edge of the initial signal has no effect on the result. 
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Thus, evolution of a signal on the left branch practically repeats the well-known pat- 
tern found in studies based on the KV. The character of propagation of the waves may be 
predicted for any ~ or uo and To. 

Case b. Evolution of a signal corresponding to the right branch of the dispersion curve 
was studied on the basis of Eq. (4.5). This equation is linear, and its solution depends not 
on uo, but only on the duration of the signal To. Comparison of the character of the solu- 
tions to Eq. (4.1), (4.3), and (4.5) has meaning only at identical values of To, not u, since 
the latter is a similitude parameter for the nonlinear process. Equation (4.5) was solved 
at V = 5 by means of numerical integration according to an explicit three-layer difference 
diagram with order of accuracy o(At 2, A~). Figure 3 shows the evolution of signal (4.2) 
at to = I. Curves 1-3 correspond to the time evolution of signal at points ~ = 0, i, and 
2.5. It can be seen that the solutions to Eqs. (4.3) and (4.5) are qualitatively different: 
Eq. (4.5) does not transform into the low-frequency part of the spectrum of the initial 
signal, so that all signals with a steep leading edge but of different durations evolve in 
qualitatively the same manner. It should be remembered that in case a) the steepness of the 
front has no effect on the evolution of the signal, while different durations of initial 
pulse lead to completely different patterns of signal evolution: either wave packets, or 
solitary tones [i0, 12]. 

General Case c. Direct numerical integration of E~. (4.2) according to a five-layer, 
implicit difference diagram with order of accuracy o(AT, A~ 2) showed that the character of 
the solution of this equation is not unambiguously determined by only one value of ~ or only 
by to. For a fairly large value, V = 5 in particular, evolution of a signal of type (4.2) 
with a steep leading edge has the following pattern at any values of o and to: a precursor 
traveling - at the speed of sound in the liquid is generated in front of the main signal (the 
"main signal" here is taken to mean that part of the initial perturbation propagated at the 
speed of sound in the mixture, equal in the present case to unity). In the case in question, 
this speed is equal to 5. Qualitatively, the structure of this precursor coincides with the 
solution in Eq. (4.5). The evolution of the main, low-frequency component of the signal is 
determined, Just as for Eq. (4.3), by the value of ~. At u < u~ (here, ~, has almost the 
same value as for Eq. (4.3), i.e., u~ = 8), the main signal takes the form of a wave packet. 
At ~ > u~, it takes the form of solitons. 

The dynamics of the formation of the precursor for the case uo = /2, To = 1 (a = 1.4 < 
ul) are shown in Fig. 4, where curves 1-4 correspond to the time evolution of a signal of 
type (4.2) at the points ~ = 0, i, 2.5, and 7.5. It should be noted that the damping of the 
precursor observed in this case is connected only with the numerical viscosity appearing on 
the right branch and due to the appearance of approximation term ~Atuttt, intrinsic to the 
chosen difference scheme, in the finite-difference analog of Eq. (4.1). Actually, the wave 
process being examined corresponds to the dispersion curve shown in Fig. ib, which allows 
for the dissipation that takes place in actual wave propagation. A futher reduction in the 
value of a due to signal duration leads to a reduction in the amplitude of the wave packet 
of the main signal, so that at to ~ I/V(~ = ~ca/co,), this amplitude may be ignored. In this 
case, evolution of the perturbation is described with a high degree of accuracy by Eq. (4.5). 
The critical value ~*, beginning with which the signal behaves according to Eq. (4.5), is 
determined by the specific value of the initial amplitude Uo. For moderate amplitudes within 
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the framework of the present approximation (uo = i-i0), ~*<< ~. Evolution of a signal of 
type (4.2) for Eq. (4.1) (at uo = ~, to = 0.05, ~ = 0.07), corresponding to this case, is 
shown in Fig. 5. Here, curves 1-4 correspond to the time evolution of the signal at points 

= 0, 1, 2.5, and 7.5. All of the curves give the distribution of the signal over the time 
in fixed values of ~, which correspond to the physical conditions of the experiment (a pres- 
sure transducer recording a signal over time was installed at a certain site). The frequency 
of the precursor ~ = moc2/co~, while the frequency of the base signal m ~ mo. It should be 
noted that a distinction can be made between the base signal and precursor by the above method 
only with respect to the time evolution. Division by wavelengths in the x-representation is 
not possible. Waves corresponding to the hlgh-frequency branch also satisfy the long-wave 
requirements (the initial equations were written within the framework of these requirements). 
As before, the length of the waves of all oscillations exceeded the distance between bubbles 
and was, of course, much greater than the bubble dimensions. The approximation of a homog- 
eneous medium was valid for all of the waves. 

5. Let us examine the results of a numerical integration of Eqs. (4.1)-(4.5) and de- 
scribe the evolution of perturbations in a liquid with gas bubbles, proceeding on the basis 
of the two-wave model. The two-wave equation that was derived describes well the evolution 
of perturbations with any steepness of initial signal and duration with respect to To. For 
finite signals with build-up time and steepness greater than I/V, the results of calculations 
by the TNE (4.1) and the Boussinesq equation(4.3) practically coincide. For finite signals 
of duration To ~ l/V, calculations by the TNE agree wlth the results of integration of the 
Klein-Gordon equation (4.5). For most of the perturbations realized in experiments, the 
steepness To of the leading edge is much less than unity and the duration of these pulses is 
considerably greater than unity. In this case, the correct pattern of signal evolution is 
given only by the TNE. Figure 4 shows the results of TNE calculations corresponding to this 
very case. The main part of the pulse evolves in accordance with the laws for low-frequency 
sound: it is transformed here into a wave packet, the period of oscillation of which is of 
the order of 1 and the velocity of which co~ = i. The hlgh-frequency part of the pulse is 
separated as a precursor -- an alternating wave train -- moving at !he speed c2 = 5. The 
period of oscillation of this train TV = i. 

At present, most of the empirical data available is from studies of the dynamics of 
perturbations in a liquid with gas bubbles corresponding to conditions for the left branch 
of the dispersion curve [12, 13]. However, the empirical results that have been obtained 
at the Institute of Thermophysics (Siberian Branch, Academy of Sciences of the USSR) [13] 
on the propagation of perturbations with steep leading edges indicates that, qualitatively 
speaking, there is agreement between the overall-pattern following from the two-wave model 
of precursor frequency in the experiment and the frequency following from the calculations. 
The precursor in this case moves at a speed ca and has a frequency ~ = moc2/co~, plotted 
from the parameters of the mixture studied in the experiment in [13]. 

The first experimental observation of a precursor in a bubble mixture was in [6] in a 
study of shock waves initiated by an explosion. Shock waves with steep fronts of different 
duration were also studied in [7]. The attempt made in this work to describe all of these 
experiments on the basis of the Klein--Gordon approximation is unjustified. Most of these 
experiments can be described only on the basis of the TNE. 

758 



LITERATURE CITED 

i. G. K. Batchelor, "Compression waves in a liquid suspension of gas bubbles," Sb. Per. 
Mekh., No. 3 (1968). 

2. V. E. Nakoryakov, V. V. Sobolev, and I. R. Shreiber, "Long-wave perturbations in a gas-- 
liquid mixture," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1972). 

3. L. Von Weingarten, "Unidlmenslonal flows of liquids with gas bubbles," in: Rheology of 
Suspensions [Russian translation], Mir, Moscow (1975). 

4. V. E. Nakoryakov, V. V. Sobolev, and I. R. Shreiber, "Finite-amplitude waves in two- 
phase systems," in: S. S. Kutateladze (editor), Wave Processes in Two-Phase Media, Inst. 
Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1975). 

5. R. I. Nigmatulin, A. I. Ivandaev, and A. A. Gubaidullin, "Numerical modelling of transi- 
ent wave processes in dispersed two-phase media," in: Transactions of the Third Inter- 
national Seminar on Models of Continuum Mechanics [in Russian], Novosibirsk (1976). 

6. V. K. Kedrinskii, "Propagation of perturbations in a liquid containing gas bubbles," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1968). 

7. N. V. Malykh and I. A. Ogorodnikov, "On the use of the Klein--Gordon equation to describe 
the structure of compression pulses in a liquid with gas bubbles," in: Continuum Dynamics 
[in Russian], Vol. 29, Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977). 

8. V. V. Goncharov, K. A. Naugol'nykh, and S. A. Rybak, "Stationary perturbations in a 
liquid containing gas bubbles," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1976). 

9. D. D. Ryutov, "Landau damping analog in the problem of the propagation of a sound wave 
in a liquid with gas bubbles," Pisma Zh. Eksp. Teor. Fiz., 22, No. 9 (1975). 

i0. V. I. Karpman, Nonlinear Waves in Dispersive Medla[in Russian], Nauka, Moscow (1973). 
ii. V. G. Gasenko, V. E. Nakoryakov, and I. R. Shreiber, "Burgers--Korteveg--de Vries approxi- 

mation in the wave dynamics of gas--liquid systems," in: Nonlinear Wave Processes in Two- 
Phase Media [in Russian], Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977). 

12. V. V. Kuznetsov, V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, "Propagation of 
perturbations in a gas--liquld mixture," J. Fluid Mech., 85 (1978). 

13. V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, V. V. Kuznetsov, and N. V. Malykh, 
"Experimental study of shock waves in a loquid with gas bubbles," in: Wave Processes in 
Two-Phase Media, op. cir. 

INTERACTION OF SHOCK WAVES IN AN ELASTOPLASTIC MEDIUM 

WITH HARDENING 

V. A. Baskakov UDC 539.3 

A study was made of the laws and the character of the deformation of an elastoplastic 
material after the passage of shock waves brought aboutby rather intense sources of perturba- 
tions. At a sufficiently great distance from the source, the fronts of the waves in the 
vicinity of the point of their interaction can be regarded as flat. The model of the medium 
provides for taking account of two hardening mechanisms [i]: kinematic and isotroplc. Using 
the apparatus of the theory of fractures [2] and the method of [3-5], at first an elastic, 
and then an elastoplastic self-slmilar solution of the problem is constructed. The principal 
difficulty here consists in seeking the previously unknown lines separating the regions of 
elastic and plastic deformation of the material, at which the boundary conditions are assigned 
for the solution of a quasilinear system of differential equations in dissipative regions. A 
study is made of the effect of the hardening parameter on the qualitative side of the inter- 
action of the waves. The basic relations were investigated using a digital computer; con- 
crete numerical results were obtained. The solutions presented are a natural development of 
[5-7]. 

Let two flat shock waves in the form of steps E~ and E2 be propagated into an undeformed 
elastoplastic medium with the velocity G at an angle of 0 < 2u < ~ (Fig. i). Within the 
framework of the theory of small alastoplastic deformations it is postulated that the total 
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